
Human-Style Theorem Proving Using PVS?

Presented at TPHOLs '97, Murray Hill, NJ, August 19-22, 1997

Myla Archer and Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375
farcher,heitmeyerg@itd.nrl.navy.mil

Abstract. A major barrier to more common use of mechanical theorem
provers in verifying software designs is the signi�cant distance between
proof styles natural to humans and proof styles supported by mechanical
provers. To make mechanical provers useful to software designers with
some mathematical sophistication but without expertise in mechanical
provers, the distance between hand proofs and their mechanized versions
must be reduced. To achieve this, we are developing a mechanical prover
called TAME on top of PVS. TAME is designed to process proof steps
that resemble in style and size the typical steps in hand proofs. TAME's
support of more natural proof steps should not only facilitate mechanized
checking of hand proofs, but in addition should provide assurance that
theorems proved mechanically are true for the reasons expected and also
provide a basis for conceptual level feedback when a mechanized proof
fails. While infeasible for all applications, designing a prover that can
process a set of high-level, natural proof steps for restricted domains
should be achievable. In developing TAME, we have had moderate suc-
cess in de�ning specialized proof strategies to validate hand proofs of
properties of Lynch-Vaandrager timed automata. This paper reports on
our successes, the services provided by PVS that support these successes,
and some desired enhancements to PVS that would permit us to improve
and extend TAME.

1 Introduction
Although the application of mechanical theorem provers to the veri�cation of
hardware designs has been somewhat successful, the use of such provers for ver-
ifying software is quite rare. A major barrier to more common use of mechanical
theorem provers in both software and hardware veri�cation, or veri�cation of
mathematical results in general, is the distance between the proof style natural
to human beings and the proof style supported in various mechanical theorem
provers.

Our goal is to make mechanical proof tools more useful to those who are
not experts in one or more mechanical theorem provers. This group includes
most mathematicians, algorithm designers, and industrial software and hardware
developers. Our approach is to develop a tool on top of an existing theorem prover
which reduces the distance between speci�cations and proofs natural to people
and the speci�cations and proofs supported by existing theorem provers. In an
ongoing case study, we have been developing the tool TAME [2, 1, 3] on top of
the PVS environment [24, 20]. TAME can be used to specify and reason about
Lynch-Vaandrager timed automata.

1.1 Some challenging questions

Reducing the distance between hand proofs and proofs generated mechanically
is very di�cult if not impossible to achieve in full generality, because di�erent
applications have their own specialized languages and conventions. This obser-
vation raises a number of questions:

? This work is funded by the O�ce of Naval Research. URLs for the authors are
http://www.itd.nrl.navy.mil/ITD/5540/personnel/farcher,heitmeyerg.html

1

1. Can restricting the problem to speci�c application domains make the prob-
lem more manageable, and, if so, how large can the domain be?

2. Can a theorem prover specialized for an application domain be used directly
by engineers?

3. Can a specialized theorem prover help with proof search as well as proof
checking?

4. What is required of the underlying theorem prover to support natural proof
steps tailored for a particular application domain?

We use our experience with TAME to address these questions.

1.2 Our approach

Our assumption in developing TAME is that the answer to the �rst question is
positive. TAME, which supports the speci�cation and mechanical veri�cation of
Lynch-Vaandrager timed automata, has been used to check a number of speci�-
cations and proofs developed by Lynch and her collaborators [10, 15, 14, 26]. The
proofs checked with TAME apply human-style reasoning in the context of con-
cepts speci�c to timed automatamodels.We believe that analogous combinations
of human-style reasoning with model-speci�c concepts will make mechanization
of veri�cation natural for other mathematical models as well.

Our approach is not to build a new mechanical theorem prover from scratch
but to build upon an existing prover that provides the basic features needed
in a prover. Our goal is to support \human-style" reasoning in a particular
mathematical model through an appropriate top layer to PVS. By human-style
reasoning, we mean reasoning of the sort found in typical hand proofs. Such
proofs usually include large proof steps, each of which corresponds to many
small, detailed steps in a mechanized proof. Although mechanical provers can
use powerful general tactics or strategies to take large steps, these steps rarely
correspond to the steps that a human takes in reasoning. Our goal is to design
the top layer so that large steps taken by the prover correspond closely to large
steps taken by humans.

Supporting human-style proofs provides many bene�ts. First, a mechanical
proof that corresponds closely to a hand proof provides documentation that
allows a person who is expert in a given mathematicalmodel, but not necessarily
an expert in the use of a mechanical prover, to understand the proof and thus
decide whether the property proved holds for the reasons expected. Second, the
hand proof of a property can be used in a direct way to search for a mechanized
proof and provides an opportunity for a person who is a domain expert but
not an expert in the full mechanized proof system to do some proof checking.
Finally, when a mechanized proof that is more natural fails, the prover can
provide feedback at a high conceptual level explaining why the proof (or the
associated speci�cation) is in error.

Natural mechanized proof steps must not only be human-style; they must be
human-sized as well. Humans can, of course, reason in tiny steps, but reasoning at
too low a level can obscure the \big picture". For readability, human-sized steps
are important. They are also important for the e�cient creation of mechanized
proofs.

Our current goal in TAME is to develop PVS strategies for proof steps that
closely resemble the steps in hand proofs. Thus, we have concentrated so far
on how to design the underlying theorem proving support for TAME, rather

2

than a high-level interface. In the process, we have identi�ed a set of services
that a programmable prover should provide to facilitate the mechanization of
natural proof steps. In particular, we have found that higher-order features are
critical for e�cient implementation of human-style steps. PVS has some of these
higher-order features. However, we have identi�ed both additional higher-order
features and other features currently lacking in PVS, that would increase the
range of human-style steps that we could mechanize using PVS. Such features
should prove useful not only to support TAME in PVS; they should be generally
useful for supporting human-style proofs in any programmable prover.

1.3 Related e�orts

Some approaches to mechanical veri�cation are designed to be totally automatic.
Such approaches include model checking [19, 12, 13] and the protocol analyzer
described in [6]. Tools based on these approaches can indeed be useful, but
requiring the assertion checking to be completely automatic limits their range
of application.

Signi�cant progress towards supporting human-style proofs in a mechanical
prover has been made in the Mizar project [21]. As noted in [22], Mizar proofs
tend to be very detailed, and unless care is taken in their construction, not easily
read. The Mizar system has been used primarily to check proofs in pure mathe-
matics; whether Mizar can be applied e�ciently to verify software is not clear. In
[9], Harrison shows how Mizar can be emulated in HOL. As a result, HOL-based
proofs can use human-style reasoning that follows the Mizar formalities and re-
quired level of detail and thus can be easily understood. Using either Mizar or
the HOL Mizar mode requires that one learn the details and conventions of a
general theorem proving system before one uses the system in conjunction with
a specialized mathematical model. This is the problem that TAME is intended
to remedy.

Although di�erent in their approaches from TAME, both the Mizar system [9]
and Brackin's protocol analyzer [6] demonstrate how specialized theorem proving
support can be built using a programmable theorem prover. The proof assistant
for the Duration Calculus (DC) [25] also illustrates this approach. Proofs in the
DC proof assistant are not human-style but use a Gentzen-style sequent proof
system developed especially for the tool.

1.4 Preview of the paper

Section 2 provides technical background needed in the rest of the paper, while
Section 3 describes the degree of success TAME has had in mimicking human-
style reasoning. Section 4 illustrates the PVS features that have been useful in
supporting human-style reasoning and discusses additional features desirable in
the underlying prover. Section 5 discusses the features desirable in the underlying
system to support the development of specialized theorem-proving, and Section 6
responds to the questions posed above. Finally, Section 7 discusses our plans for
the further development of TAME.

2 Background
This section describes the mathematical model upon which TAME is based, and
gives a brief introduction to both PVS and TAME.

2.1 The Lynch-Vaandrager Timed Automata Model

A Lynch-Vaandrager (LV) timed automaton is a very general automaton, i.e., a
labeled transition system that incorporates the notions of current time and timed

3

transitions. In the model, a system is described as a set of timed automata, inter-
acting by means of common actions. For veri�cation purposes, these interacting
automata can be composed into a single timed automaton. An automaton need
not be �nite-state: for example, the state can contain real-valued information,
such as the current time, water level or steam rate in a boiler, velocity and accel-
eration of a train, and so on. This makes timed automata suitable for modeling
not only computer systems but also real-world quantities, such as water lev-
els and acceleration. LV timed automata can have nondeterministic transitions;
this is particularly useful for describing how real-world quantities change as time
passes.

The de�nition of timed automaton below, based on the de�nitions in [11, 10],
was used in our case study involving a deterministic timed automaton [1].

A timed automaton A consists of �ve components:

{ states(A), a (�nite or in�nite) set of states.
{ start(A) � states(A), a nonempty (�nite or in�nite) set of start states.

{ A mapping now from states(A) to R�0, the non-negative real numbers.
{ acts(A), a set of actions (or events), which include special time-passage actions

�(�t), where �t is a positive real number, and non-time-passage actions, classi�ed
as input and output actions, which are visible, and internal actions;

{ steps(A) : states(A) � acts(A) ! states(A), a partial function that de�nes the
possible steps (i.e., transitions).

This de�nition describes a special case of Lynch-Vaandrager timed automata
that requires the next-state relation, steps(A), to be a function. By using the
Hilbert choice operator �, we are able to use essentially the same de�nition in the
nondeterministic case as well [3]. A challenge is how to make reasoning about
nondeterminism in TAME resemble human-style reasoning as closely as possible.

The properties of timed automata that one wants to prove fall into three
classes: (1) state invariants, typically proved by induction; (2) simulation re-
lations; and (3) ad hoc properties of certain execution sequences of a timed
automaton. Proofs in both (1) and (2) have a standard structure with a base
case involving start states and a case for each possible action. They are thus
especially good targets for mechanization. Below, we de�ne timed executions,
reachability and invariants, and simulation relations.

Timed Executions. A trajectory is either a single state or a continuous series
(i.e., an interval) of states connected by time passage events. A timed execution
fragment is a �nite or in�nite alternating sequence � = w0�1w1�2w2 � � �, where
each wj is a trajectory and each �j is a non-time-passage action that \connects"
the �nal state s of the preceding trajectory wj�1 with the initial state s

0 of
the following trajectory wj. A timed execution is a timed execution fragment in
which the initial state of the �rst trajectory is a start state.

A timed execution is admissible if the total time-passage is in�nity. The notion
of admissible timed executions is important in expressing properties de�ned over
time intervals (e.g., the gate at a railroad crossing is not down after a train has
left unless a new train is about to arrive), rather than time points, and in de�ning
simulation relations between timed automata.

Reachability and Invariants. A state of a timed automaton is reachable if
it is the �nal state of the �nal trajectory in some �nite timed execution of
the automaton. An invariant of a timed automaton is any property true of all
reachable states, or equivalently, any set of states containing the reachable states.

4

Simulation Relations. A simulation relation [18, 17, 16] relates the states of
one timed automaton A to the states of another timed automaton B in such a
way that the (visible) actions and their timings in admissible timed executions
correspond. The existence of a simulation relation from A to B implies that
each visible behavior (i.e., timed sequence of visible actions) of automaton A is
a member of the set of visible behaviors of automaton B.

2.2 PVS

PVS (Prototype Veri�cation System) [24] is a speci�cation and veri�cation en-
vironment developed by SRI. The system provides a speci�cation language, a
parser, a type checker, and an interactive proof checker. The PVS speci�cation
language is based on a richly typed higher-order logic. Proof steps in PVS are
either primitive steps or strategies de�ned using primitive proof steps, applica-
tive Lisp code, and other strategies. Strategies may be built-in or user-de�ned.
Proof goals in PVS are represented as Gentzen-style sequents. To satisfy a proof
goal, one must establish that the antecedent formulae imply one of the (zero or
more) consequent formulae.

The primitive proof steps of PVS incorporate arithmetic and equality decision
procedures, automatic rewriting, and BDD-based boolean simpli�cation. Thus,
PVS provides both a highly expressive speci�cation language and automation of
most low-level proof steps, in contrast to to other widely used proof systems,
such as HOL [8] (which is lacking in decision procedures) and the Boyer-Moore
theorem prover [5] (whose speci�cation language is �rst-order). The programma-
bility of PVS makes it a candidate to be the basis for specialized tools.

2.3 TAME

TAME (for Timed Automata Modeling Environment) is based upon a standard
template speci�cation for the timed automata described in Section 2.1, a set of
standard theories, and a set of standard PVS strategies. The TAME template for
specifying Lynch-Vaandrager timed automata provides a standard organization
for an automaton de�nition. To de�ne a timed automaton, the user supplies the
following six components:

{ declarations of the non-time actions,
{ a type for the \basic state" (usually a record type) representing the state variables,
{ any arbitrary state predicate that restricts the set of states (the default is true),
{ the preconditions for all transitions,
{ the e�ects of all transitions, and
{ the set of start states.

In addition, the user may optionally supply

{ declarations of important constants,
{ an axiom listing any relations assumed among the constants, and
{ any additional declarations or axioms desired.

To support mechanical reasoning about timed automata using proof steps
that mimic human proof steps, TAME provides a set of standard strategies we
have constructed using PVS. These strategies are based on a set of standard
theories and certain template conventions. For example, the induction strategy,
which is used to prove state invariants, is based on a standard automaton theory
called machine. To reason about the arithmetic of time, we have developed a
special theory called time thy and an associated simpli�cation strategy called
TIME ETC SIMP for time values that can be either non-negative real values
or 1.

5

3 Successes with Human-Style Proving in TAME

We have successfully created PVS strategies for many of the human-style proof
steps needed to verify properties of timed automata. We discovered these strate-
gies by constructing PVS proofs that resembled the corresponding hand proofs
as much as possible. In constructing the proofs, we used the standard PVS rules
and strategies and then generalized the results. In several cases, additional PVS
features would have allowed us to more closely follow human-style steps. Sec-
tion 4 describes these additional features.

We have applied TAME to several problems: the Generalized Railroad Cross-
ing (GRC) problem [10, 11], a timed version of Fischer's mutual exclusion al-
gorithm [15], the Boiler Controller problem [14], and a Vehicle Control System
example [26]. Most recently, we have used TAME to check some properties of a
Group Communication Service [7].

As noted in Section 2.1, the interesting properties of timed automata fall into
three classes. Each class has its own associated proof styles. State invariants
are proved either by induction or directly using other state invariants. Proofs of
simulation either have a case structure similar to induction proofs or are direct
proofs combining other simulation results. Proofs of properties of timed execu-
tions are more ad hoc in their structure but employ certain specialized types of
inference in their domain-relevant steps. We have had moderate success in de-
veloping human-style proof steps for properties in the �rst and third classes and
have used these steps to obtain proofs. Our major strategy for state invariant
proofs, discussed in more detail below, sets up induction proofs. Due to limita-
tions in the PVS speci�cation language, we have not yet developed an analogous
strategy for simulation proofs. Currently, PVS does not allow us to de�ne the
simulation property at a useful level of abstraction. Future improvements to PVS
are expected to remove this barrier.

Below, we provide more detail about our PVS strategies, the extent to which
they support the translation of hand proofs into PVS proofs, and the bene�ts
we have gained from their use.

3.1 Some PVS strategies that support human-style proof steps

Some existing strategies. Below, we describe some of the PVS strategies we
have built into TAME. These support steps that are frequently found in hand
proofs of properties of timed automata.

The induction strategy performs the (usually implicit) step in human reason-
ing about state invariants that converts induction over the number of transitions
from a start state to a reachable state into a base case (for start states) and a
case for each possible action that could lead to a transition. Besides making
this conversion, the induction strategy completes the trivial proof branches and
presents the user with the nontrivial base or action cases. The knowledge that
the prestate and poststate are reachable is carried along in the action cases;
this facilitates the application of previously proved state invariant lemmas in a
proof. For each TAME application, the appropriate induction strategy must be
compiled from the declaration of the non-time actions entered into the template
speci�cation.

The invariant-lemma strategy supports the application of state invariants to
arbitrary states during a proof, the default state in an induction proof being the

6

prestate. When applied to a state whose reachability status has not been estab-
lished, the reachability of that state is retained as a condition on the invariant
for that state.

The precondition strategy simply invokes the speci�c precondition in an action
case of an induction proof. (The full precondition may have other nontrivial
components such as bounds on the time when the action can occur.)

The constant-facts strategy. This strategy introduces known facts about the
constant \parameters" in a timed automaton description.

The strategy TIME ETC SIMP combines simple case-based reasoning and
reasoning about time arithmetic, where time values can be nonnegative real
numbers or 1. The combination is particularly useful, since the de�nitions of
the operations in time arithmetic are themselves case-based. This strategy is
currently our best approximation to the human-style step \it is now obvious".

The strategy USE EPSILON supports reasoning about nondeterministic
components in the poststate. It introduces the constraints on a nondeterministic
component on the main proof branch and forks a side branch for the existence
proof entailed by the use of Hilbert's �-axiom. It (inconveniently) requires as one
of its arguments the domain type of the predicate to which � is applied. Thus,
there is room for improvement in this strategy. Nevertheless, we have found it
very helpful in our applications involving nondeterminism (even though � does
not �t our needs for reasoning about nondeterminism precisely [3]).

The last-event and �rst-event strategies have proved helpful in ad hoc proofs
about timed executions. The last-event strategy adduces, on the main proof
branch, the last event before a point in the execution that possesses a certain
property. The property, the point in the execution, and the name to be assigned
to the last event must be supplied as arguments. A side proof branch is created
in which one is obliged to prove the existence of some event that occurs prior
to the given point in the execution and has the property. The �rst-event strat-
egy is symmetrically analogous. The strategies are supported by the lemmas
last event and �rst event shown in Figure 2 in Section 4.

The discretization strategy. The discretization strategy is also mainly useful
in proofs about timed executions. It permits the leap (when justi�ed) from rea-
soning about all states during an execution to reasoning about all states at the
beginning of some trajectory of an execution. Again, an appropriate side proof
branch is created, in which one must show that the property to be proved itself
satis�es the property trajectory constant: i.e., it is constant in any trajectory.
Improvements and variations on this strategy are under consideration.

Some future strategies.Once those PVS enhancements described in Section 4
that are currently under way are complete, we plan to implement additional
strategies. We describe a few examples of these strategies below.

The reachability strategy will determine and make known in the course of a
TAME proof the fact that a particular state is reachable. This strategy will make
the invariant-lemma strategy more powerful in the context of proofs concerning
timed executions. While obvious to a human that any state in an admissible
timed execution is reachable, some e�ort is required to introduce this fact into
a mechanized proof, due partly to the variety of ways one can represent a state.
The strategy will invoke several lemmas, apply the relevant one, and remove

7

hhh
Lemma 6.3. In all reachable states of SystImpl, if Trains.r.status = I for any r, then Gate.status = down.

Proof: Use induction. The interesting cases are enterI and raise . Fix r .

1. enterI (r)

By the precondition, s.Trains.r.status =P .

If s.Gate.status ∈ {up,going –up }, then Lemma 6.1 implies that s.Trains.f irst (enterI (r)) > now + γdown,
so s.Trains.f irst (enterI (r))>now . But, the precondition for enterI (r) is s.Trains.f irst (enterI (r)) ≤ now .
This means that it is impossible for this action to occur, a contradiction.

If s.Gate.status = going −down , then Lemma 6.2 implies that s.Trains.f irst (enterI (r)) >
s.Gate.last (down). By Lemma B.1, s.Gate.status = going −down implies s.Gate.last (down) ≥ now . This
implies that s.Trains.f irst (enterI (r)) > now , which again means that it is impossible for this action to
occur.

The only remaining case is s.Gate.status = down. This implies s ′.Gate.status = down, which suffices.

2. raise

We need to show that the gate doesn’t get raised when a train is in I . So suppose that s.Trains.r.status = I .
The precondition of raise states that ∃/ r : s.CompImpl.r.sched −time ≤ now + γup + δ + γdown, which implies
that, for all r , s.CompImpl.r.sched −time > now . But Parts 1 and 3 of Lemma 5.1 imply that in this case,
s.Trains.r.status = P , a contradiction.hhh

Fig. 1. A typical hand proof we have mechanized in TAME is the proof of the Safety
Property from [11].

the irrelevant information. Its implementation will combine formula naming and
recognition by content.

Naming strategies will keep the expanded versions of complex
expressions|most notably, the representation of the poststate in an induction
proof|out of sight, but retrieve, use, and hide their de�nitions when simpli�ca-
tion strategies are applied to the sequent. The implementation of these strategies
will combine formula naming and improved access to hidden formulae.

A skolemization-instantiation strategy will coordinate skolemization and in-
stantiation of pairs of quanti�ed formulae. This strategy can improve the induc-
tion strategy for state invariants that are quanti�ed formulae. Its implementation
will require the ability to probe for information about the number and type of the
quanti�ed variables in a formula. Its argument formulae will usually be identi�ed
by name.

The inductive-hypothesis strategy will retrieve the uninstantiated inductive
hypothesis from among the hidden formulae, in induction proofs of quanti�ed
state invariants. It is needed in those rare cases where the default instantiation
provided by the improved induction strategy is not the one desired. Its imple-
mentation will use formula naming and improved access to hidden formulae.

3.2 Translation support from our strategies

In the GRC, Fischer's Algorithm, the Boiler System, and the Vehicle Control
Systems examples, we used TAME successfully to check both induction proofs
and direct proofs of state invariants. We succeeded in mechanizing all of the
state invariant proofs in these examples with the exception of a few induction
proof branches involving complex arithmetic reasoning that could be checked
by hand, but for which discovering the extra hints needed to supplement the
decision procedures in PVS would be very time-consuming. In the majority of
the induction proofs we mechanized, TAME's specialized strategies alone were
enough to obtain the proofs. Figure 1 shows a typical hand proof from the GRC
example. The steps in this hand proof are induction, appeal to invariant lemmas,

8

appeal to a precondition, and simple reasoning. Its mechanization uses only the
induction strategy, the invariant-lemma strategy, the precondition strategy, and
TIME ETC SIMP.

Other induction proofs sometimes required extra steps from the following four
categories: (1) explicit substitutions to give the PVS decision procedures a boost,
(2) manipulation to lift embedded quanti�ed expressions to the top level, (3)
expansion of a de�nition, and (4) application of lemmas about real arithmetic,
sometimes accompanied by the use of the PVS CASE strategy to provide hints.
They also occasionally involved what we consider a more legitimate application
of the CASE strategy, namely, when reasoning by cases is a natural human proof
step.

The degree of isomorphism between our TAME proofs and the hand proofs
from which they were derived is very high for the GRC and Boiler System ex-
amples. For Fischer's Algorithm and the Vehicle Control Systems examples, the
degree is less, but for di�erent reasons. The hand proofs for Fischer's Algorithm
used a di�erent case breakdown than that supported by our induction strategy.
In the Vehicle Control Systems example, the speci�cation was in a form slightly
di�erent from the form TAME supports, and as a result the speci�cation had to
be translated into the required form. However, the TAME proofs did resemble
the hand proofs in two important respects: the action cases considered signif-
icant by TAME and in the hand proofs were identical, and the facts required
in the TAME proofs could be inferred from the hand proofs. Imposing some
restrictions on the form of the human speci�cation and proof would increase the
degree of isomorphism.

3.3 Bene�ts of the TAME approach

We can construct induction proofs with TAME rather quickly. The initial ca-
pabilities of TAME were developed during our speci�cation and veri�cation of
the GRC example. The next examples (with the exception of the Group Com-
munication Service) took about two or three work weeks at most. Translating
the speci�cations of each example into the TAME template required approxi-
mately two to three days. The proofs of individual invariants usually required
approximately half an hour to half a day. Proofs of some of the more compli-
cated invariants (whose hand proofs run from one to two and a half pages) often
required two or three days to construct. The speed with which we can construct
TAME proofs increases when we have a hand proof of similar structure as a
guide. However, even in the absence of such a hand proof, or any hand proof
at all, we have found TAME to be very helpful in proof exploration, because it
simpli�es the mechanization of many large steps natural in a hand proof.

In applying TAME to additional examples, we �nd that the previously devel-
oped strategies are highly reusable. This has contributed greatly to the speed
with which we have been able to check new examples.

On occasion, a dead end was reached during an attempt to mechanize an
induction proof using TAME. In the case of the original Boiler Controller spec-
i�cation, these dead ends revealed some errors in the speci�cation and two of
the proofs. Due to the form of the proofs, the contents of the sequents at these
dead ends were easily traced to the speci�cation and the point reached in the
reasoning. Thus, the type of feedback we were able to provide in the Boiler
Controller example was very speci�c in pinpointing both typographical and rea-

9

soning errors. In the case of the Group Communication Service, we are using
TAME for proof exploration as well as proof checking. Thus, we cannot always
anticipate the line of reasoning that will succeed nor the meaning of dead ends
in a proof. In some cases, a dead end suggested the reformulation of complex
invariants. In others, dead ends have uncovered additional invariants needed in
the full correctness proof.

4 Desirable Capabilities in the Underlying Prover

In developing PVS strategies for human-style proofs, we have found certain PVS
features to be particularly helpful and have discovered other features, currently
missing in PVS, that would be helpful if provided. The features that we have
identi�ed should be useful for supporting human-style proof steps in other pro-
grammable theorem provers|not just PVS.

Useful higher order features of PVS. To de�ne several of the generic steps,
we found various higher-order features of PVS useful. The most useful higher-
order feature is the ability to quantify over predicates in de�nitions and lem-
mas. This feature permits us (see Figure 2) to state the induction principle
machine induct, the existence lemmas last event and �rst event, and the
de�nitions of the function discretize and related concepts involved in the dis-
cretization strategy. This feature would also permit support for reasoning that
uses such higher-order concepts from real analysis as \convex function", which

hh

Example 1: The theorem machine_induct and supporting definitions.

base(Inv) : bool = (FORALL s: start(s) => Inv(s));
inductstep(Inv) : bool = (FORALL s, a: reachable(s) & Inv(s) & enabled(a,s) => Inv(trans(a,s)));
inductthm(Inv): bool = base(Inv) & inductstep(Inv) => (FORALL s : reachable(s) => Inv(s));
machine_induct: THEOREM (FORALL Inv: inductthm(Inv));

Example 2: The lemmas last_event and first_event with supporting definitions.

state_event_prop: TYPE = [atexecs,states,posnat -> bool];
Q: state_event_prop;
last_event: LEMMA (FORALL (alpha:atexecs, s:states, P:state_event_prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:pos_nat): (precedes_state(alpha)(n,s) & P(alpha,s,n))) IN
(FORALL (n:posnat): (Q(alpha,s,n) => (EXISTS (m: posnat): m >= n & Q(alpha,s,m)

& (FORALL (k: posnat): k >= m & Q(alpha,s,k) => k = m))))));
first_event: LEMMA (FORALL (alpha:atexecs, s:states, P:state_event_prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:pos_nat): (precedes_event(alpha)(s,n) & P(alpha,s,n))) IN
(FORALL (n:posnat): (Q(alpha,s,n) => (EXISTS (m: posnat): m <= n & Q(alpha,s,m)

& (FORALL (k: posnat): k <= m & Q(alpha,s,k) => k = m))))));

Example 3: The theorem discrete_equiv and some supporting definitions.

state_pred: TYPE = [atexecs -> [states -> bool]];
index_pred: TYPE = [atexecs -> [nat -> bool]];
discretize (T: state_pred): index_pred =
LAMBDA (alpha:atexecs): LAMBDA (n:nat): T(alpha)(fstate(w(alpha)(n)));

trajectory_constant(SP:state_pred): bool = FORALL (alpha:atexecs, s:states):
(in_atexec(alpha)(s) => (SP(alpha)(s) = SP(alpha)(fstate(w(alpha)(traj_index(alpha)(s))))));

discrete_equiv_pred(T:state_pred):bool = (trajectory_constant(T) =>
(FORALL (alpha:atexecs, s:states):

(in_atexec(alpha)(s) => (T(alpha)(s) = (discretize(T))(alpha)(traj_index(alpha)(s))))));
discrete_equiv: THEOREM FORALL (T:state_pred): discrete_equiv_pred(T);
hh

Fig. 2. Some higher-order de�nitions useful in supporting human-style proof steps.

10

turned up in the Boiler Controller example. Whether adding such support to
TAME will prove worthwhile is at this point unknown.

The ability to de�ne the state of an automaton as a record, some of whose
components are functions, supports our strategies in a more indirect way, by sim-
plifying the template conventions followed in specifying a particular automaton
and relied upon by our strategies.

Other useful PVS features. Another feature of PVS useful for supporting
human-style proof steps is the presence of built-in decision procedures. These
decision procedures provide much of the support needed (for example, in our
strategy TIME ETC SIMP) for taking the analogous mechanical steps in the
many cases where a hand proof contains steps such as \it is obvious", \this
is a contradiction", etc. The existing decision procedures handle propositional
logic, equational reasoning, automatic rewriting, and linear arithmetic and can
be invoked concurrently using built-in PVS strategies.

Desirable higher-order features lacking in PVS. PVS lacks some useful
higher-order features. One such feature is parametric polymorphism, which per-
mits the types of the parameters in de�nitions or lemmas to be type variables or
to include type variables in their representation. Another higher-order capability
missing in PVS is one that would permit us to express the de�nition of a sim-
ulation relation between automata. This capability is discussed in more detail
below.

Parametric polymorphism requires on-the-
y type inference, but can simplify
both speci�cation and proof. Currently, the following cannot be done in PVS
without explicit type information from the user:

{ de�nition of a predicate stating that the value of a state component is un-
changed by time passage events;

{ application of generic lemmas on parameterized types, such as queues and
ordered lists;

{ de�nition of generic lemmas that support strategies for converting 8 expres-
sions to :9: expressions and, similarly, 9 to :8:; and

{ invocation of the Hilbert �-axiom on a predicate.

Given parametric polymorphism, we could eliminate many instances where
application-speci�c detail is required, and extend the set of generic human-style
proof steps supported by TAME. PVS does support generic de�nitions, axioms,
and lemmas by way of parameterized theories. However, using these in a spec-
i�cation currently requires either providing explicit type information in places
or explicitly importing all relevant theory instantiations. In either case, explicit
type information is needed when the axioms or lemmas are invoked in the course
of a proof. The need for such type information is a barrier to creating generic
strategies that are simple to apply. For example, our strategy USE EPSILON
(see Section 3.1) currently needs as an argument not only the predicate to which
the �-axiom is being applied, but the domain type of that predicate.

When we try to de�ne a simulation mapping generically in PVS (see Fig-
ure 3), we encounter dead ends. For example, to refer to an automaton by name
in a de�nition, we need an automaton type. The obvious representation of an
element of this type is a record whose components are the states, actions, start
state predicate, transition function, and so on. However, states and actions are
most naturally represented as types, and record components (unlike parameters

11

hh
Let A and B be timed automata, and IA and IB be, respectively, state invariants of A and B. Let f be a
binary relation between states (A) and states (B). Then f is a simulation mapping from A to B if it
satisfies the following three conditions:

1. If u ∈ f [s] then now (u) = now (s).

2. If s ∈ start (A) then f [s] ∩ start (B) =/ ∅∅.

3. If s →π A s ′ is a step of A, s ,s ′ ∈ IA, and u ∈ f [s] ∩ IB, then there exists u ′ ∈ f [s ′] such that there
is a timed execution fragment from u to u ′ having the same timed visible actions as the step π.

hh

Fig. 3. De�nition of simulation between automata. The notation f [s] stands for
fu : (s; u) 2 fg.

of theories) cannot have type \type" in PVS. All the alternative, less natural
solutions we have considered also seem to require some feature currently missing
in PVS.1

Other desirable features lacking in PVS. Several PVS features are being
added. These will permit us to implement several human-style strategies for
which we have designs. These features include the ability to name formulae and
subformulae, to retrieve a hidden formula by name, and to identify formulae by
content. They will permit the writing of strategies that can use speci�c formulae
in a sequent without referring to their exact \address". The usefulness of such
a feature in HOL has been noted by others [4]. Section 3.1 outlined some of our
intended applications of these features.

We have also identi�ed other features, some available in other mechanical
provers, that would be extremely useful in supporting human-style reasoning
steps. Examples include the ability to skolemize or instantiate embedded quan-
ti�ers, the expansion of the scope of the existing decision procedures to handle
some obvious facts about nonlinear real arithmetic, better automated support
for reasoning about expressions involving the constructors or destructors of an
abstract data type, and the ability to do resolution-style reasoning with respect
to all or part of a sequent. Below, we describe how these features would prove
useful.

Embedded quanti�ers. We have encountered many cases where a human rea-
soning step is sidetracked in a PVS proof because embedded quanti�ers cannot
be \reached" for skolemization or instantiation. Figure 4 illustrates two such
cases. The �rst case in Figure 4 is a generic illustration of a situation in which
instantiation of the quanti�ed variables in situ would lead to a proof without
splitting the current goal. The second case is an actual invariant lemma from the
proof of the implementation of Fischer's Algorithm from [15], in particular, the
Strong Mutual Exclusion invariant that guarantees that no two processes can
simultaneously be in the critical section. In this case, the skolem constant of the
embedded \FORALL" in the inductive conclusion must be used as the instantia-
tion of the corresponding \FORALL" in the inductive hypothesis in nearly every
proof branch. The structure of the mechanical proof is obscured by the need to
extract the embedded quanti�ed subexpressions. For both examples in Figure 4,
the embedded quanti�er problem could be dealt with by recasting the formulae
as formulae quanti�ed at the top level. For complex state invariants, however,

1 In a future version of PVS, SRI plans to support both theory parameters for theories
and theory interpretations [23]. For our purposes, either may be su�cient.

12

hh

Example 1:

P(a)
(EXISTS (x): P(x)) => (FORALL (y): Q(y))

Q(b)

Example 2:

Inv_5_4(s: states): bool = (FORALL (i: Index):
(pc(i,s) = leave_trying OR pc(i,s) = critical OR pc(i,s) = reset) =>

(user?(x(s)) & (name(x(s)) = i)
& (FORALL (j: Index): ((NOT (j = i)) =>

(NOT (pc(j,s) = set OR pc(j,s) = leave_trying OR pc(j,s) = critical OR pc(j,s) = reset))))));

lemma_5_4: LEMMA (FORALL (s: states): reachable(s) => Inv_5_4(s));
hh

Fig. 4. A sequent and invariant with embedded quanti�ers. The invariant Inv 5 4 of
Lemma 5 4 embodies the Strong Mutual Exclusion property that implies that proces-
sors with di�erent indices cannot simultaneously have their program counters in their
critical region.

this cannot always be done; see, e.g., [7]. Even when recasting is possible, the
resulting formulae are often less natural, and this violates the philosophy behind
TAME.

Extended arithmetic decision procedures. In applying TAME to hybrid au-
tomata, we have encountered reasoning about nonlinear real arithmetic where
PVS requires an interactive boost in the form of appropriate application of sev-
eral lemmas about real arithmetic. Figure 5 shows the lemmas we have needed
in practice. This list suggests useful extensions to the decision procedures.

Abstract data type reasoning. When an abstract data type is involved in a
proof, many relevant inferences are obvious to a human but not to the prover.
For example, in reasoning about the abstract data type time (see Figure 6), a
human seeing A = dur(B) immediately interprets this equality as equivalent to
fintime(A) = B, but the prover requires detailed human guidance to make the
same inference. Of course, if a data type constructor requires more than one
argument, information about all the destructor-values are needed in drawing a
conclusion about the constructor-value. A resolution-style step could be useful
in handling this.

hh

real_thy: THEORY
BEGIN

nonnegreal:TYPE = {r:real | 0 <= r};
sq(x:real):real = x*x;

% posreal_mult_closed: LEMMA (FORALL (x,y:real): (x > 0 & y > 0) => x*y > 0);
nonnegreal_mult_closed: LEMMA (FORALL (x,y:real): (x >= 0 & y >= 0) => x*y >= 0);
greater_eq_nonnegmult_closed: LEMMA (FORALL (x,y,z:real): (x >= 0 & y >= z) => x*y >= x*z);
square_nonneg: LEMMA (FORALL (x:real): (sq(x) >= 0));
nonpos_neg_quotient:LEMMA (FORALL (x:real,y:real): (x <= 0 & y < 0) => x/y >= 0);
nonneg_pos_quotient:LEMMA (FORALL (x:real,y:real): (x >= 0 & y > 0) => x/y >= 0);

END real_thy
hh

hh

real_thy: THEORY
BEGIN

nonnegreal:TYPE = {r:real | 0 <= r};
sq(x:real):real = x*x;

% posreal_mult_closed: LEMMA (FORALL (x,y:real): (x > 0 & y > 0) => x*y > 0);
nonnegreal_mult_closed: LEMMA (FORALL (x,y:real): (x >= 0 & y >= 0) => x*y >= 0);
greater_eq_nonnegmult_closed: LEMMA (FORALL (x,y,z:real): (x >= 0 & y >= z) => x*y >= x*z);
square_nonneg: LEMMA (FORALL (x:real): (sq(x) >= 0));
nonpos_neg_quotient:LEMMA (FORALL (x:real,y:real): (x <= 0 & y < 0) => x/y >= 0);
nonneg_pos_quotient:LEMMA (FORALL (x:real,y:real): (x >= 0 & y > 0) => x/y >= 0);

END real_thy
hh

Fig. 5. Some lemmas about real arithmetic

13

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
time: DATATYPE

BEGIN

fintime(dur:{r:real|r>=0}): fintime?
infinity: inftime?

END time
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Fig. 6. The type time is a simple example of an abstract data type in PVS. It is
the union type of nonnegative real numbers and 1. The destructor dur extracts the
argument of the constructor �ntime. �ntime? and inftime? are recognizer predicates.

Resolution-style steps. Another application we have encountered for a
resolution-style step is in automatically proving that the value of a predicate
is constant over a trajectory from its propositional structure and the properties
of its atomic parts. This would be helpful in automating the proof obligation
that would accompany the use of our discretization strategy.

5 Desirable Features in the Prover Environment

In developing specialized strategies in a programmable theorem prover, addi-
tional support beyond the services provided by the prover itself is highly desir-
able. Since strategy development involves much interactive experimentation with
proofs, features that would allow the developer to experiment more e�ciently
are especially important. These features include e�cient ways to save and test
alternate proofs, e�cient ways to continue incomplete branches of partial proofs
without executing the remaining branches, and the ability to obtain timing in-
formation to help locate ine�cient steps in a strategy under development (e.g.,
why does carrying along the reachability of the poststate in our induction strat-
egy double its execution time?). The features mentioned are among the planned
PVS enhancements.

6 Lessons learned

Based on our experience with TAME, we have found at least partial answers to
the four questions listed in Section 1.1. Section 4 addresses the fourth question.
Below, we address the �rst three.

Question 1. Restricting the domain does make a signi�cant di�erence in the
extent to which human-style theorem proving can be supported. In a restricted
domain in which a limited repertoire of proof steps is su�cient for most human
proofs, we have been able to provide substantial support for human-style me-
chanical proofs. Many of the human-style steps we support, such as the induction
strategy, the precondition strategy, and the invariant-lemma strategy, are highly
speci�c to the mathematical model supported by TAME, and are e�ective only
when applied to speci�cations of a highly restricted form. The induction strategy
is quite complex and very �nely tuned for its purpose. Thus, we do not expect
our techniques to be useful in supporting human-style proofs across the board.
With respect to how large the restricted domain can be, we note that TAME's
domain is signi�cantly larger than that of other proof tools aimed at verifying
automata|particularly model checkers, which require �nite-state automata.

Question 2. So far, TAME has not been used by any engineers, so we still have
no answer to this question. However, we have demonstrated that it is possible
for a theorem proving expert to provide useful feedback to practitioners.

14

Question 3. Tackling the Group CommunicationService problem has provided
us with some experience in using TAME to search interactively for a proof. We
have succeeded in constructing several induction proofs without the aid of a hand
proof. Using TAME to keep track of the details and to identify the signi�cant
cases has helped in focusing the interactive contribution required in a search
on determining which previously proved state invariants to apply. Making the
current proof goals readable would be a signi�cant help during proof search. In
this, the naming strategies planned by SRI can play an important role.

7 Future Directions

The TAME proofs that we have produced have a structure which re
ects the
human-style proof steps that comprise them. However, what these human-style
steps are is currently discernible only to a TAME expert. We plan to make
TAME proofs more readable by non-experts in two ways, both of which require
the enhancements to PVS in progress. First, we plan to name the TAME proof
steps uniformly. Since some strategies, such as the induction strategy, are com-
piled for each particular automaton, doing this may require the ability to set
and access a global variable through PVS whose value is the automaton name.
Second, we plan to print, in the form of comments, the information introduced
in certain proof steps, such as application of an invariant lemma or invocation
of the precondition. To do this, we need the ability to retrieve the content of a
named formula in the sequent.

Currently, we must compile the automaton-speci�c strategies by hand from
the user's description of the nontime actions and a user-de�ned set of abbrevi-
ations. We plan to automate this procedure, either internally or externally to
PVS.

The PVS enhancements we have discussed were inspired by our experience in
developing TAME. We hope to use our continuing experience with the design
of strategies for human-style reasoning and the development of specialized tools
based upon PVS to motivate the further development of PVS, and perhaps other
theorem proving systems, in what we consider to be an important direction.

Acknowledgments

We wish to thank N. Lynch, G. Leeb, V. Luchangco, H. B. Weinberg, A. Fekete,
A. Shvartsman, and R. Khazan for providing us with challenging examples for
testing TAME. We also thank R. Je�ords and S. Garland for helpful discussions.

References

1. M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A
case study. In Proc. 1996 IEEE Real-Time Technology and Applications Symp.
(RTAS'96). IEEE Computer Society Press, 1996.

2. M. Archer and C. Heitmeyer. TAME: A specialized speci�cation and veri�cation
system for timed automata. In Work-In-Progress Proc. 1996 IEEE Real-Time
Systems Symp. (RTSS'96), pages 3{6, 1996.

3. M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed au-
tomata: A case study. In Hybrid and Real-Time Systems (HART'97), volume
1201 of Lect. Notes in Comp. Sci., pages 171{185. Springer-Verlag, 1997.

4. P. Black and P. Windley. Automatically synthesized term denotation predicates: A
proof aid. In Higher Order Logic Theorem Proving and Its Applications (HOL'95),
volume 971 of Lect. Notes in Comp. Sci., pages 46{57. Springer-Verlag, 1995.

15

5. R. Boyer and J. Moore. A Computational Logic. Academic Press, 1979.
6. S. Brackin. Deciding cryptographic protocol adequacy with HOL. In Higher Or-

der Logic Theorem Proving and Its Applications (HOL'95), volume 971 of Lecture
Notes in Computer Science, pages 90{105. Springer-Verlag, 1995.

7. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable
group communication service. In Proc. Sixteenth Ann. ACM Symp. on Principles
of Distributed Computing (PODC'97), pages 53{62, Santa Barbara, CA, August
1997.

8. M. J. C. Gordon and T. Melham, editors. Introduction to HOL: A Theorem Prov-
ing Environment for Higher-Order Logic. Cambridge University Press, 1993.

9. J. Harrison. A Mizar mode for HOL. In Proc. 9th Intl. Conf. on Theorem Proving
in Higher Order Logics (TPHOLs'96), volume 1125 of Lect. Notes in Comp. Sci.,
pages 203{220. Springer-Verlag, 1996.

10. C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in
formal veri�cation of real-time systems. In Proc., Real-Time Systems Symp., San
Juan, Puerto Rico, Dec. 1994.

11. C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in
formal veri�cation of real-time systems. Technical Report MIT/LCS/TM-51, Lab.
for Comp. Sci., MIT, Cambridge, MA, 1994. Also Technical Report 7619, NRL,
Wash., DC 1994.

12. T. Henzinger and P. Ho. Hytech: The Cornell Hybrid Technology Tool. Technical
report, Cornell University, 1995.

13. R. P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: the
Automata-Theoretic Approach. Princeton University Press, 1994.

14. G. Leeb and N. Lynch. Proving safety properties of the Steam Boiler Controller:
Formal methods for industrial applications: A case study. In J.-R. Abrial, et al.,
eds., Formal Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control, vol. 1165 of Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

15. V. Luchangco. Using simulation techniques to prove timing properties. Master's
thesis, Massachusetts Institute of Technology, June 1995.

16. N. Lynch. Simulation techniques for proving properties of real-time systems. In
REX Workshop '93, volume 803 of Lecture Notes in Computer Science, pages 375{
424, Mook, the Netherlands, 1994. Springer-Verlag.

17. N. Lynch and F. Vaandrager. Forward and backward simulations { Part II:
Timing-based systems. To appear in Information and Computation.

18. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based
systems. In Proc. of REX Workshop \Real-Time: Theory in Practice", volume 600
of Lecture Notes in Computer Science, pages 397{446. Springer-Verlag, 1991.

19. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
20. S. Owre, N. Shankar, and J. Rushby. User guide for the PVS speci�cation and

veri�cation system (Draft). Technical report, Computer Science Lab., SRI Intl.,
Menlo Park, CA, 1993.

21. P. Rudnicki. An overview of the MIZAR project. In Proc. 1992 Workshop on
Types and Proofs for Programs, pages 311{332, June 1992. Also available through
anonymous ftp as pub/cs-reports/Bastad92/proc.ps.Z on ftp.cs.chalmers.se.

22. P. Rudnicki and A. Trybulec. A note on \How to Write a Proof". In Proc. 1992
Workshop on Types and Proofs for Programs, June 1996. Available through P.
Rudnicki's web page at http://www.cs.ualberta.ca/~piotr/Mizar/.

23. J. Rushby. Private communication. NRL, Jan. 1997.
24. N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual.

Technical report, Computer Science Lab., SRI Intl., Menlo Park, CA, 1993.
25. J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in

PVS. In Third Intern. School and Symp. on Formal Techniques in Real Time and
Fault Tolerant Systems, Lect. Notes in Comp. Sci. 863. Springer-Verlag, 1994.

26. H. B. Weinberg. Correctness of vehicle control systems: A case study. Master's
thesis, Massachusetts Institute of Technology, February 1996.

This article was processed using the LATEX macro package with LLNCS style

16

